WAVE PROCESSES IN A NONISOTHERMIC PLASMA
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The "coarse™particle method [1-4] is used in this paper to solve the problem of decay of any ion-den-
sity rupture when the electron temperature is significantly higher than the ion temperature (in the calcula-
tions the ion temperature is assumed to be zero), As in [5-12] a model is chosen in which only the ionic-
component motion is considered, and the electron density is described by the Boltzmann distribution. ‘The
necessity of using the coarse-particle method for solving the kinetic equations arises due to the fact that the
hydrodynamic description of ion-acoustic waves in a nonisothermic plasma with T = 0 is valid only for
waves of comparatively small amplitude:

Prnax < s = 1.26 T /e, U< 1.58 (To/ my)'"

For large amplitudes and velocities the regular—solution wave structure is destroyed and a multicur-
rent flow is generated [5].

We start with the system of equations
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where f is the ion distribution function, u is the ion velocity, ¢ is the potential, T is the electron tempera-
ture, and n, is the unperturbed plasma density.

The characteristic equations for the kinetic equation (1) are the equations of motion of ionic layers
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Here j is the particle (layer) number, p is the ion density, the velocity u is measured in units of ion-
acoustic velocity (T/mj)"2, the coordinate x is in Debye radii D = (T/ 47m0e2)1/ ?, and the potential in units
of T/e.

The algorithm of solving Eqgs. (3), (4) is discussed in detail
in [11]. In all calculations we used 1000 particles, and the length of
the spatial interval was 150 D, The calculation time of a typical
s =y 1 “1 - variant up fo a time t = 25w6‘11 consisted of 15 min on a BESM-6 com-~
., puter,

Consider the evolution of an initial ion-density rupture (a step)
given by

O_N{C:const for 0z <z
0= 4 (€ — 1) exp (lz — 20/ B) for 22> 7o (5)
u; (&, 0) =0

Fig. 1
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7] 7 71 For a relatively small density drop (C € 4) the step decay leads, as
7 Za - 4] 7 could be expected, to the formation of a laminar shock wave travelling right
- \ Z and a dilatation wave travelling left. The shock wave has an oscillating leading
2 K\ y edge due to dispersion at the charge separation, which is accompanied by a por-
Z 5 ” tion with a predominantly constant amplitude ¢ . We notice that the presence
g 5| 4, of this portion is related to a nonstationary process; for t — = the whole region
I 4 X ;1 should be filled by oscillators. The leading solution amplitude increases to
27 © some value @ax < @« ; front reversal and particle interchange do not occur.
5 57 The results of these calculations were compared with the accurate solution of
7 g gt 3 the rupture problem in dissipationless gas dynamics with an adiabatic index
A 4 ; v =1, which corresponds to neglecting dispersion effects (D~ 0). The veloc-
7 k\ ity of a gas-dynamic shock wave M, is determined from the transcendental
g i i equation
- ¢ / M = C exp [— (Mo — M) (6)
7
7 = \\Z and the values of the density, potential, and gas velocity at the front equal
75 50 5= M Fo=21n My, &= My— M (7)
Fig.3

The potential amplitude ¢ agrees quite well with the quantity q_ao obtained
from Eq. (7). The velocity of the oscillating shock wave M is somewhat
higher than M, from (6), since it is determined by the amplitude ¢ max of the leading solution. Figure 1
shows the results of calculating the evolution of a rupture with C = 4; the points correspond to the gas-
dynamic potential profile.

For initial density drops 5< C £ 13 (0.8% @ < ¢x) the leading soliton amplitude, unlike the previ-
ous case, increases to the value ¢, > ¢ x, after which reversal occurs with the formation of a pre-
cursor and fast particles, reflected by the front, Calculations show that if ¢ < ¢*, particle emission has
a pulsating character, i.e., after the leading soliton amplitude increased to ¢y ax 5 ¢ «, later increasing
again due to the step energy, new particle emission takes place, etc, This fact has been noticed [5] for
the evolution problem of symmetric compression, Figure 2 presents results of calculating rupture decay
with C =9,

An increase of the step amplitude C and of the corresponding potential amplitude g?) C > 13,& > Q%)
leads to the formation of a2 shock wave without regular oscillations, but with a sharp front between the
fundamental part of the wave and the preceding part. At the same time continuous reflection of particles
takes place. The formation of a precursor wave is accomplished by a retardation of the fundamental wave.
Indeed, if a laminar shock wave always anticipates a gas dynamic profile, in the case considered the furn-
damental wave lags afterit. For example, the velocity of the gas dynamic shock wave is M =2.49 at C =
50, and the wave velocity in the calculations is M~ 1.8 for D # 0, The velocity of the precursor wave is,
indeed, significantly higher and equals Mp ~ 5,3 in this case, In view of the fact that a further increase in
the potential ¢ in the shock wave requires a significant increase in C (see below) and, correspondingly, in
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JZ(”—A, t=1 7 the number of particles, for large amplitude calculations we used a modified
— ; model in which only the shock wave region was considered. The initial condi-
tions
AN |
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”/ t—ﬁﬁ . are assigned in this case by the gas dynamic solutions and are of the form
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Vs
z 75 77 75 Figure 3 shows the potential profiles and particle velocities at various
moments of time in case ¢ =2, Clearly seen is the formation of a current of
Fig. 4 fast particles and a precursor current, as well as a sharp front of the funda-

mental wave. With increasing potential amplitude ¢ the maximum potential
value in the precursor wave ?p increases (see below) and the difference between the fundamental wave and
the precursor wave vanishes. This occurs for ¢~ 2 4,

? 2 2.2 2.35
P, 125 1.5 2.0

The transition to amplitudes @ > 2.4 causes a qualitative rearrangement in the nature of the process,
instead of shock wave formation there occurs a continuous spread of the initial profile, This fact was ob-~
served experimentally [13] and was verified by calculations [11, 14, 15]. We notice that [11, 14] considered
the evolution of the initial compression

plz, 0) =14 Cexpl— (z — z0)2/ 1]

and [15] the piston problem. Figure 4 shows profiles of the potential and particle velocities at various
moments of time in case ¢ =2.5, Unlike the smalleramplitude cases considered earlier, the particles can
be sharply divided into two groups, fast and slow.

Thus, the study of evolution of any ion-density rupture in a nonisothermic plasma shows that, depend-
ing on the density ratio C or the potential amplitude ¢ there exist four qualitatively different cases:

1) € <5, @ 2 0.7, a laminar oscillating shock wave;

2) 52 C< 13,082 ¢ < @xs reversal of the shock wave with pulsating particle reflection with for-
mation of a precursor wave; the fundamental wave has a sharp leading edge;

3) C>13, ¢x< @ < 2.4, a shock wave with a sharp front between the fundamental and precursor wave,
a potential profile without oscillations, continuous particle reflection;

4) @ >2.4, continuous rearrangement of the potential profile,
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